ehs logo
Safe Use of Chemicals in Laboratories

    • Appendix A: Occupational Safety and Health Standards for Hazardous Chemicals in Laboratories Final Rule (29 CFR 1910.1450)
    • Appendix B: Laboratory Checklist
    • Appendix C: New York City Fire Department 1-66
    • Appendix D: Glossary
    • Appendix E: Chemical Storage Scheme
    • Appendix F: SampleSDS
    • Appendix G: Sample Permit
    • Appendix H: OSHA 1910.134
    • Appendix I: Accident Report
    • Appendix J: Safety Bulletin
    • Appendix K: Sample Chemical Waste Disposal Request Form
    • Appendix L: Laboratory Health and Safety Training Outline
    • Appendix M: Prior Approval Protocol
    • Appendix N: Standard Operating Procedures for Particularly Hazardous Materials
    • Appendix O: Standard Operating Procedures for Physical Hazards in the Laboratory
    Go to Top

    I. Statement of Policy
    On January 31, 1990 the Federal Occupational Safety and Health Administration (OSHA) adopted the Occupational Safety and Health Standards for Hazardous Chemicals in Laboratories Final Rule (29 CFR 1910.1450, hereinafter referred to as the Laboratory Standard and attached as Appendix A), which regulates exposure to hazardous chemicals in laboratories.

    It is the policy of Columbia University to comply with all applicable requirements of the Laboratory Standard by addressing the unique exposure conditions under which laboratory work is performed, and to protect laboratory workers from adverse health effects that may result from their work in laboratories, regardless of what hazardous substances are used. It is also the policy of the University to fully comply with all other statutes and regulations that pertain to laboratory operations and facilities.

    Accordingly, Columbia University has implemented a comprehensive training and safety program to inform employees not only of potential hazards to which they may be exposed, but also of whatever specific procedures and equipment are required to control and minimize exposure to hazardous substances. Departments and Administrative Units are required to provide this health and safety training information to their laboratory employees and to comply with the University's Chemical Hygiene Plan as mandated by OSHA. The University Office of Environmental Health and Safety provides university-wide assistance to accomplish this goal.

    II. Chemical Hygiene Responsibilities

    The Chief Executive Officer has ultimate responsibility for chemical hygiene within the institution, and, with other administrators, provides continuing support for institutional chemical hygiene.

    The University Laboratory Safety Committee is responsible for ensuring that the University complies with the Chemical Hygiene Plan and that the Plan accurately and completely meets institutional needs and regulatory mandates. The University Labo ratory Safety Committee shall consist of the following officers or their high level designees: Provost of the University (Chair of the Committee) Senior Vice President Vice President for Facilities Management Vice President for Arts and Sciences General C ounsel Dean, School of Engineering and Applied Science Director, Office of Environmental Health and Safety University Medical Officer Chemical Hygiene Officer Chairs of: Physics Chemistry Biology Chemical Engineering Electrical Engineering Directors of: L amont-Doherty Geological Observatory Nevis Laboratory

    The Committee will administer and enforce the provisions of the University's Chemical Hygiene Plan, and will revise or modify it as necessary.

    Go to Top

    The Environmental and Occupational Health Office will: Provide data relative to regulated substances and their proper use; Provide technical support to the University Laboratory Safety Committee; Develop and update the Chemical Hygiene Pla n on behalf of the Committee; Conduct laboratory surveys, including air monitoring; Maintain all relevant records (training, air monitoring surveys, departmental notification procedures, etc.); Help Principal Investigators develop precautions and provide assistance in complying with the Chemical Hygiene Plan; Coordinate repair of improperly functioning safety equipment with Facilities Management; Accompany any regulatory inspector having jurisdiction over health and safety matters; Enforce, on behalf of a nd in concert with the Laboratory Safety Committee, the provisions of the Chemical Hygiene Plan; Maintain the laboratory Certificate of Fitness holder permits required by the New York City Fire Department and coordinate all such applications, exam schedul es, and payment of fees.

    The Principal Investigator will: Have overall responsibility for chemical hygiene in his/her laboratories; Ensure that laboratory employees are informed of, and follow, the chemical hygiene rules and procedures; Ensure that appropriate personal protective equipment (gloves, lab coats, goggles, etc.) and health and safety equipment (blast shields, spill control material, etc.) are available and in use as required; Ensure that appropriate chemical hygiene training has been provided; Conduct a visu al survey of laboratories on a periodic basis to ensure safe working conditions (See Appendix B for a recommended checklist); Immediately report improperly functioning equipment directly to EH&S.

    The Project Director, who is designated by the Principal Investigator, will: Have primary responsibility for chemical hygiene procedures for specific operations outlined by the Principal Investigator, including the procurement and use of necessa ry health and safety items; Immediately report improperly functioning equipment to the Principal Investigator or EH&S.

    The Laboratory employee will:

    • Plan and conduct each operation in accordance with the general procedures specified herein, as well as whatever additional specific procedures are required by his/her supervisor;
    • Maintain good personal chemical hygiene habits;
    • Immediately report improperly functioning equipment such as fume hoods directly to the Principal Investigator, the Project Director, or EH&S.

    The Facilities Management Office will:

    • Provide regular maintenance of laboratory equipment such as fume hoods, safety showers, eyewashes, etc.;
    • Promptly repair improperly functioning equipment;
    • Notify affected laboratory personnel prior to removal or shut-down of utilities or laboratory safety equipment (hoods, showers, etc.).

    The General Counsel's Office will:

    • Provide oversight in matters relating to statutory issues;
    • Insure that the provisions of this policy satisfy legal requirements.

    The University Health Service will provide medical consultation and monitoring as required by the Laboratory Standard.

    Go to Top

    Chairs and Directors will:

    • Develop notification procedures for their departmental laboratories;
    • Monitor inventory program.

    III. Laboratory Facility

    Design and equipment:

    All laboratory facilities at Columbia shall be designed, equipped, and operated in compliance with the New York City Fire Department talent laboratory regulation (Directive 1-66: "Regulations for the Storage and Use of Chemicals, Acids and Gases in College, University, Hospital, Research and Commercial Laboratories," a copy of which is attached as Appendix C) and have:

    • An appropriate general ventilation system with air intakes and exhausts located so as to avoid intake of contaminated air;
    • Properly functioning laboratory fume hoods for operations that give off noxious odors, or flammable or poisonous vapors, or radioactive materials and that:
      1. are vented so that a minimum average face velocity of 100 feet per minute, with minimum face velocity at any point not less than 75 feet per minute, is provided;
      2. whenever possible have ducted exhaust fans located outside the building on the roof;
      3. in circumstances where perchloric acid is heated above ambient temperature must contain washdown provisions to remove trapped vapors within the hood and duct exhaust system;
    • Fully charged ABC or carbon dioxide fire extinguishers located both at the laboratory exit and within 50 feet of any point in the laboratory. At least one fire extinguisher shall be provided for each 2500 square feet of laboratory area;
    • A fixed overhead or flexible handheld deluge shower/eyewash located within 25 feet of the laboratory door where more than 5 gallons of corrosive acids or flammable liquids are stored or used;
    • Properly functioning laboratory sinks and drains;
    • Appropriate spill control material/equipment such as sodium bicarbonate for acid spills, boric or citric acid for alkali spills, activated charcoal for organic solvent spills, or commercial spill control pads, pillows and booms;
    • A campus telephone prominently labeled with emergency phone numbers for Fire and Medical Emergencies, Facilities Emergencies, and EH&S.


    EH&S personnel will regularly inspect and test eyewashes at least once every 3 months and safety showers and fume hoods once every year. Fire extinguishers within and outside the laboratory shall be checked every 6 months by EH&S. Malfunctioning safety equipment detected by laboratory personnel during attempted use or departmental laboratory surveys and discharged fire extinguishers should be reported immediately to the EH&S of five for coordination of prompt repair or replacement.

    Go to Top


    The quality and quantity of local exhaust ventilation shall be evaluated on installation and whenever a change in local ventilation devices is made. Hood face velocity shall be periodically measured by EH&S (at least yearly) and upon request.

    IV. Chemical Hygiene Plan

    The University Chemical Hygiene Plan has been developed to protect employees and students of Columbia University from exposure to hazardous or potentially hazardous laboratory chemicals through the implementation of the provisions outlined below. These provisions, designed to comply with the requirements of the OSHA Laboratory Standard, include such elements as general laboratory procedures, engineering controls, chemical procurement, distribution and storage, environmental monitoring, and employee information and training. In order to minimize the hazards of chemical exposures, the following provisions shall be implemented for all work involving hazardous or potentially hazardous substances.

    All laboratory personnel who handle hazardous chemicals must comply with the following standard operating procedures. In addition, laboratory Project Directors and Principal Investigators must develop written safety protocols for any research projects involving specific hazards of a particular chemical or class of chemicals. These written safety protocols must be maintained in the laboratory, used in laboratory training, and made available upon request to laboratory workers. Please refer to Appendices N and O regarding standard operating procedures for "high-hazard" chemicals and physical hazards in the laboratory.

    General Laboratory Procedures:

    Avoid unnecessary or routine exposure to chemicals by any route (inhalation, skin/eyes, ingestion). Be alert to circumstances that can result in inadvertent exposure. Bending down to clean up a spill of an extremely volatile liquid, for example, may result in an inhalation exposure. Chemicals can be absorbed through the skin when clothing, shoes, or lab coats are contaminated with chemicals.

    Do not attempt to identify chemicals by smell or taste. Never use mouth suction for pipetting or starting a siphon.

    Avoid eating, drinking, gum chewing, or the application of cosmetics in areas where laboratory chemicals are present. Wash hands before conducting these activities. Avoid storage, handling or consumption of food or beverages in chemical storage areas and environmental rooms. Refrigerators, glassware, or utensils that are used for laboratory operations must not be used for any other purposes.

    Go to Top

    Engineering Controls:

    Engineering controls such as the laboratory fume hood and the design of closed-system experiments are the primary means of controlling or minimizing hazardous chemical releases. The following provisions shall apply:

    Apparatus or operations that may discharge toxic chemicals shall be continuously vented or conducted into local exhaust devices.

    Engage only in operations for which the quality of the available ventilation system is appropriate. Factors to consider include the toxicity, quantity, and rate of evaporation of the chemical(s), type of procedure, and frequency of exposure. For example, use a fume hood for operations that might result in the release of toxic vapors or dusts. Such operations include the use of volatile substances, operations that may result in the generation of aerosols, and any manipulation, handling, or reaction that may result in the uncontrollable release of the substance. As a rule of thumb, use a fume hood or other local ventilation device when working with any appreciably volatile substance with a Permissible Exposure Limit (PEL) or Threshold Limit Value (TLV) of less than 50 PPM or when working with any volatile hazardous chemical (those with vapor pressures above 20 mm Hg). Procedures involving moderately or slightly toxic chemicals (those with PELs or TLVs greater than 100 PPM and 500 PPM respectively) may have to be conducted in a fume hood depending on the quantity involved and the rate of evaporation. Permissible Exposure Limits are exposure standards mandated by the Occupational Safety and Health Administration (OSHA) and are legally enforceable. Threshold Limit Values (TLVs) are exposure standards set by the American Conference of Governmental Industrial Hygienists (ACGIH). (See glossary, attached as Appendix D.)

    Use only those fume hoods for which an average face velocity of 100 FPM at a sash height of 12 inches has been confirmed and noted on the fume hood by EH&S. Do not use fume hoods that are posted as "OUT OF SERVICE-DO NOT USE THIS HOOD."

    Keep sash openings to the height specified by EH&S to maximize flow and minimize operator exposure.

    Minimize materials that are stored in hoods and do not allow materials or apparatus to block baffles, vents, or air flow. Sources of emissions should be kept at least 6 inches inside the hoods.

    Ensure that fume hoods that can be individually controlled by an on/off switch are left on when the hood is used for the storage of toxic substances, or if it is uncertain whether adequate general laboratory ventilation will be continuously maintained.

    Do not allow the release of toxic substances in environmental rooms (cold and warm rooms) since these have recirculated atmospheres that may allow for a dangerous build-up of air contaminants as well as provide an ignition source for flammable vapors.

    Use glove boxes that have been smoke-tested, tagged, and approved by EH&S to ensure that negative air pressure is maintained.

    Do not add to or modify local exhaust ventilation devices without the prior written approval of EH&S.

    Go to Top

    Work Habits:

    Handle and store laboratory glassware with care. Do not use damaged glassware. Discard broken glass in the designated glass waste container. Use extra care with Dewars flasks and other evacuated glass apparatus. Shield or wrap them to contain chemicals and fragments should implosion occur. Use equipment only for its designated purpose.

    Avoid practical jokes or other behavior that might confuse, startle, or distract another worker.

    Confine long hair and loose clothing. Wear shoes at all times in the laboratory. Do not wear shorts or open-toed shoes in the laboratory.

    Keep work areas clean and uncluttered. Clean up the work area upon completion of an operation.

    Clearly label and properly store all chemicals and equipment.

    Contact lenses are prohibited when chemical vapors are present or when a greater than negligible risk of a splash to the eyes exists. However, contact lenses may only be worn in conjunction with tight-fitting goggles for the lowest risk activities

    If possible, do not conduct hazardous operations or procedures alone. If it is not possible to have someone working with you, inform Security and ask to be checked at regular intervals.

    Leave laboratory lights on when an operation is unattended. Place an appropriate sign on the door, briefly stating the nature of the experiment, contact person, and phone number. Provide for the containment of the toxic substances in the event of failure of an engineering control such as a fume hood or utility service. For example, working stills should be shielded with a blast shield and the hood sash should be lowered to the minimum working distance.

    Wear the appropriate personal protective equipment (goggles, gloves, faceshield, etc.) designated by the Principal Investigator.

    Thoroughly wash areas of exposed skin before leaving the laboratory.

    Chemical Procurement:

    Departments shall be responsible for maintaining an inventory of materials ordered or on hand, and must produce inventory control records at the request of regulatory agencies or the Chemical Hygiene Officer.

    Before a substance is used, information on proper handling, storage, and disposal should be made known to those who will be exposed to it. A Material Safety Data Sheet (SDS), accompanying the shipment of the material, is one such source of information(sampleSDS is attached in Appendix E). These Safety Data Sheets are maintained at the receiving point (such as Chemstore, Biology Stockroom, etc.). In addition, the EH&S office has Safety Data Sheets on file on a computerized data base that contains approximately 54,000 Safety Data Sheets. In the event thatSDS information is incomplete, or in cases where the chemical is generated by the laboratory itself, additional informational material may be necessary and must be provided before the operation begins. Many health and safety reference books are available in the EH&S library as well as in the Departmental libraries for such use, and may be consulted at any time by any laboratory worker.

    Whenever possible, all chemical shipments must be received and logged in at designated departmental locations (such as Chemstore, Biology Stockroom, etc.) in order to satisfy inventory control requirements. Shipments may not be received directly by a Principal Investigator, Project Director, laboratory worker, or student.

    Go to Top

    Expiration dates must be clearly marked for materials known to deteriorate or to become unstable or reactive, including:

    • Picrics originating at less than 10% hydration
    • Perchlorates
    • Peroxides
    • Peroxidizable materials
    • Polymerizers that react violently in polymerization or become hazardous after polymerization

    Stored chemicals must be examined periodically (at least annually) for deterioration and container integrity. Dated chemicals must be disposed of before expiration. Since ethers form explosive peroxides over time, they must be disposed of either 12 months after date of receipt or 6 months after being opened, whichever comes first.

    Chemical Distribution:

    When chemicals are hand-carried, they should be placed in a suitable outside container or bucket. "Freight-only" elevators should be used if possible. Dumbwaiters must be used whenever they are provided.

    Chemical Storage:


    Hazardous substances shall be stored so that incompatible substances are properly segregated. Refer to the recommended "Storage Scheme" in Appendix F.

    Flammable materials (those with Cashpoints <100 F) must be stored in premises that fully comply with the New York City Fire Department Directive 1-66.

    Go to Top


    Hazardous chemicals (flammable liquids, flammable solids, oxidizers, unstable/reactives) may be stored only in amounts that comply with the New York City Fire Department "Laboratory Permit" posted on the entrance of each laboratory. (See Appendix G for a sample permit.)
    Storage and use of flammable gases within the laboratory units must be in accordance with the New York City Fire Department laboratory regulation 1-66, which allows a maximum capacity of 15.4 cubic feet per laboratory.
    Flammable gases may be stored only in laboratory units where there is an on-going operation requiring their use. Such operations shall allow for storage of flammable gases sufficient to meet the operating requirements of the equipment in that laboratory plus an equal reserve.

    A FLAMMABLE GAS sign must be posted at the entrance of the laboratory. Acids must be stored so that the container does not contact bare metal.
    Containers of acid can be stored on plastic rays. Store nitric acid on plastic away from other acids, bare metals, and wood. Avoid storage of chemicals on bench tops, in fume hoods, on the floor, or near exits. Avoid exposing chemicals to heat or direct sunlight.

    Environmental Monitoring:

    The EH&S of five periodically conducts laboratory air monitoring surveys. Historical monitoring data have indicated that airborne levels of hazardous chemicals at Columbia University are well below the Permissible Exposure Limits mandated by OSHA. Thus, regular monitoring of airborne concentrations is not usually required.
    However, air monitoring is always conducted upon request by a laboratory employee, Project Director, Principal Investigator, etc. Additionally, all laboratories are periodically surveyed (at least annually) by EH&S staff who are trained industrial hygienists. When work methods or conditions indicate a potential for exposure at or above the action level, air monitoring is conducted. Such work methods or conditions may include:

    1. Use of an open vessel instead of a closed system;
    2. Use of a procedure that involves significant quantities of hazardous chemicals over an extended period of time;
    3. Signs or symptoms of exposure (skin and eye irritation, shortness of breath, nausea, headache, etc. experienced by laboratory workers).

    Chemical Hygiene and Housekeeping Provisions:

    Principal Investigators shall conduct a visual survey of their laboratories on a periodic basis (at least quarterly) to ensure safe working conditions.
    Please see Appendix B for a LABORATORY CHECKLIST, part of which is excerpted below.

    Safe laboratory working conditions require:

    • Clear walkways, with unobstructed exits and no slipping/tripping hazards such as containers on the floor or outlet strips or extension cords across walkways;
    • Unobstructed access to safety equipment such as fire extinguishers, eyewashes, and safety showers;
    • Equipment in safe operating condition, including: electrical wires in good condition and not overloaded to any one outlet, pumps, mercury bubblers vented to fume hoods, belt guards on pumps, all equipment electrically grounded, and refrigerators properly designated and used (foodlchemicals/flammables);
    • Reasonably neat and clean counter tops and shelves;
    • Maintenance: Malfunctioning safety equipment detected by laboratory personnel during attempted use or visual surveys and used fire extinguishers should be reported immediately to the EH&S office to coordinate prompt repair or replacement. See the "Laboratory Design and Equipment" section on page 6 for additional maintenance responsibilities.

    Personal Protective Equipment:

    Personal protective equipment (PPE) shall be used as necessary to augment the protection provided by engineering controls, experiment design, standard operating procedures, and good work practices. PPE should not be used as the primary means of controlling hazardous chemical exposures! Selection of PPE shall take into account a variety of factors including the identification of the hazards and task-specific conditions, the routes of exposure (inhalation, skin absorption, eye or skin contact, and /or ingestion), and the performance of the PPE materials in providing a barrier to these hazards. PPE selection should be specified by the Principal Investigator or Project Director in conjunction with the EH&S office. Respirator use in the laboratory must be approved by the EH&S office and must comply with respiratory protection requirements specified by OSHA 1910.134. (See Appendix H.)

    Go to Top

    general, the following PPE procedures shall apply:

    • All persons, including visitors, must wear appropriate eye protection where chemicals are stored or handled.
    • Appropriate gloves must be worn when the potential for skin contact with a toxic material exists. Glove selection should be based on the dermal toxicity of the chemical, the chemical resistance of the glove material, and the exposure potential (potential for splash, immersion, etc.). Chemical permeation glove selection charts are available from specific manufacturers or the EH&S office. Inspect reusable gloves before each use, wash them with soap and water after use and replace them as needed.
    • All other personal protective equipment such as face shields, lab coats, shoe covers, etc. specified by the Principal Investigator or Project Director must be used as directed.
    • PPE such as laboratory coats must be removed immediately upon significant contamination.

    Medical Program:

    Certain situations or exposure conditions may warrant medical consultation or monitoring of laboratory employees, which will be conducted by physicians at the Columbia University Health Service at no cost to the affected employee(s). Medical monitoring of laboratory personnel, including follow-up exams, shall occur when:

    • An employee develops signs and symptoms of exposure to a hazardous chemical. Such symptoms may include headache, rash, nausea, coughing, tearing, irritation or redness to the eyes, irritation of the nose or throat, dizziness, or loss of motor ability or judgment;
    • An employee has direct skin or eye contact with a hazardous chemical;
    • A chemical emergency release (spill, leak, fire, explosion) results in the likelihood of a hazardous exposure;
    • Air monitoring results reveals an airborne concentration of a hazardous substance routinely above the OSHA action level (or in the absence of an action level, the OSHA PEL) for an OSHA regulated substance for which there are exposure monitoring and medical surveillance requirements.

    Emergency treatment is available twenty-four hours a day. Such treatment is coordinated through the Security Office, and includes the dispatching via radio of an ambulance staffed by certified Emergency Service Technicians and/or transportation to a hospital.

    Go to Top


    DEPARTMENTAL EMPLOYEE ACCIDENT REPORTS (appendix I) are required in the event of any job-related injury or illness involving an University employee. The Depar Mental Accident Report is retained in Personnel Services, 315 Dodge Hall, and a copy is forwarded to the EH&S office. The copy is reviewed to determine whether further industrial hygiene and safety investigations are warranted, or whether training programs should be revised or modified.

    LABORATORY HEALTH AND SAFETY TRAINING RECORDS are maintained in the EH&S office. Any laboratory health and safety training conducted by Department or Administrative Units must be documented and must contain the following information: date, training outline, length of training, persons conducting the training, and employee's printed name, signature, and Social Security number. A copy of the information must be sent to the EH&S office. For training specifications, see the "Employee Information and Training" section below.

    HAZARDOUS CHEMICAL WASTE DISPOSAL REQUEST FORMS and manifest records are retained by the EH&S office.

    MEDICAL RECORDS are retained by the University Health Service in accordance with New York State and federal regulations.

    DEPARTMENTAL "CHAIN OF NOTIFICATION" PERSONNEL AND PROCEDURES are retained by the Department or Administrative Unit and a copy is also filed with EH&S.

    CHEMICAL EMERGENCY RELEASES AND INCIDENT REPORTS are prepared and maintained by the EH&S office.

    INVENTORY CONTROL RECORDS pertaining to hazardous chemicals are maintained at the Department and will be made available to the EH&S office upon request.

    Go to Top

    Signs and Labels:

    The entrance to every laboratory must have the following signs prominently posted


    The following signs must be posted at the laboratory entrance if any materials listed below are used or stored in the laboratory:

    Water-Reactive Materials
    Flammable Gases
    Radioactive Material
    Biohazardous Material
    Poisonous Gases

    These and most other recommended and required signs (including emergency telephone labels) are available from the EH&Soffice upon request. In addition, a copy of the New York City Fire Department laboratory permit for each laboratory must be prominently posted at the laboratory entrance. The laboratory permit lists the maximum storage amounts of flammable liquids, flammable solids, oxidizers, and unstable/reactives permitted in each laboratory. Warning signs shall be posted at areas or near equipment here special or unusual hazards exist, including laser hazards, high voltage hazards, etc.

    Location signs shall be prominently posted to indicate safety showers, eyewash stations, other safety and first aid equipment, exits, and where food and beverage consumption and storage are permitted

    All chemical containers must be clearly labeled with the chemical identity and the major hazard as well as the manufacturer's name and address. Waste containers must be clearly labeled with the chemical identity, the major hazard and the name of the generating research group. Squirt bottles must also be labeled.

    Fire Safety:

    New York City Fire Department (NYCFD) regulations require the presence of a Certificate of Fitness (C of F.) holder in every laboratory whenever it is in operation. C of F. holders are responsible for knowing the NYCFD laboratory regulations (flammable liquid storage limits, chemical storage requirements, general laboratory safety, etc.) and for monitoring compliance within their own laboratory. Ultimate responsibility for safety provisions and liability for each laboratory, however, shall be under the supervision of the Principal Investigator.

    The University Laboratory Safety Committee has decided that, due to the prolonged and irregular operating hours of many laboratories, all graduate students in the laboratory sciences who work in a laboratory unit requiring a permit for operation from the NYCFD will henceforth be required to pass the C of F examination before beginning work in an University laboratory.

    The Office of Environmental and Occupational Health will provide regularly scheduled training sessions at the beginning of each semester for C of F applicants and will arrange for on-site administration of the examination to the extent possible.

    Weekly inspections of the laboratories and corridors will be conducted by the Certificate of Fitness holder on his/her floors. These inspections must include, but are not limited to the following:

    Go to Top


    Means of egress from the laboratory must not be blocked. An unobstructed path to the exit must be maintained at all times. Access to emergency equipment, safety showers, eyewashes, fire extinguisher, first aid kits, etc. must not be obstructed. Exposed chemical storage must be limited to daily needs only. Chemicals not required for the procedure(s) in progress are to be promptly stored per the requirements of FD Directive 1-66 (R).

    Fire extinguishers must be tagged, charged and dated.


    Exit signs on the floors illuminated.
    Weekly check of fire extinguishers: tagged, charged and dated.
    Stairwell doors operational.
    Stairwells clear and unobstructed.


    Upon hearing the fire alarm:

    1. Total evacuation of the building is required each and everv time the alarm sounds!
    2. Exit your laboratory, turning off all equipment in your path of travel, and close the laboratory door as you exit.
    3. Exit the building via the staircase. Never use the elevator. Do not reenter the building for any reason until you are permitted by Security, the New York City Fire Department, or the University Fire Marshall.

    Upon discovering a fire:

    1. Evacuate the area, closing all doors in your path of travel.
    2. Alert all occupants by sounding the building alarm system from the manual pull stations located at the exit stairways throughout the building.
    3. Notify the Security desk (x99) from an adjoining building to assure their reception of the alarm signal.
    4. The individual discovering a fire must report as much information as possible to arriving Security and fire fighting forces including floor of incident, room number, type of room (laboratory, of fine, storeroom, etc.), substances and materials involved if known, and any other pertinent information such as explosives, water-reactives, etc.

    FIRE EXTINGUISHMENT: Extinguishment should only be attempted on small fires that can be extinguished with the available portable fire extinguisher by an individual who has been trained in its use. In general:

    Go to Top

    Remove the extinguisher from its bracket, maintain the means of egress to your back to provide a means of escape in the event the fire is not extinguished. Remember "PASS" PULL the pin AIM nozzle at the base of the fire SQUEEZE the handle to discharge the product S HOOT the product at the base of the fire, moving the nozzle in a sweeping motion from side to side.


    Upon extinguishment, the University Security office (x99) and EH&Soffice (x4-8749) must be notified for inspection and the proper removal of burned and/or contaminated materials.

    FIRE DRESS: Scheduled fire drills will be conducted three times a year per the requirements of the laws of New York State, Chapter 392 and New York City Fire Prevention Directive 9-64(R).

    Hazardous Chemical Releases and Spills:

    Laboratory emergencies require prompt action to prevent or reduce undesirable effects. Laboratory employees must be able to immediately take control of the situation and quickly assess the existing and potential hazards and carry out the appropriate response actions. Immediate hazards of fire, explosion, and release of toxic vapors and gases are of prime concern.
    The following written emergency response procedures contain minimum specifications that must be followed by all Columbia laboratory workers.In addition, written emergency response actions for specific hazards in the laboratory (such as skin contact with hydrofluoric acid) must be developed by the Principal Investigator, approved by the EH&RS office, and provided to the laboratory workers. These written emergency response procedures must also specify the proper spill control equipment or material to be used.

    SPILL CONTROL EQUIPMENT: The Principal Investigator shall make available appropriate spill control items in each laboratory. Such items may include commercial spill control products as absorbent pads, pillows, rolls, booms, etc. and/or other suitable neutralizing or absorbing items such as sodium bicarbonate for acid spills, boric acid or citric acid for alkali spills, or activated charcoal for solvent spills. The Environmental Health and Safety Office is available for assistance in selecting proper spill control equipment.

    SPILL CONTROL FOR ACIDS, ALKALIES,AND SOLVENTS: As a general guideline, spills of less than 1 liter of these materials are considered small. However, spills of particularly hazardous substances, regardless of the amount spilled, may require immediate EH&RS notification and assistance. Particularly hazardous substances include select carcinogens, reproductive toxins and substances with a high degree of acute toxicity. Whenever a spill occurs, treat the spill as a potentially

    Respirators may be necessary even in a small spill clean-up, depending on the substance. Only those employees approved by EH&S to wear respirators can attempt spill clean-up requiring respiratory protection.

    ii) Use the proper spill clean-up material. Commercial pads, pillows, booms, rolls, etc. are available from several manufacturers, but vary in what substances they control. For example, many commercial absorbents cannot be used with hydrofluoric acid spill clean-up. In addition, to commercial absorbent pads, pillows, booms, etc. the following can be used:

    • Sodium bicarbonate for acid spills
    • Boric acid or citric acid for alkali spills
    • Activated charcoal for solvent spills

    iii) Confine the spill to a small area. Do not let it spread. Dispose of all spill-clean up material in an appropriately marked hazardous waste bag (available from EH&S) and label the contents. Fill out an incident report form and contact EH&Sfor follow-up and to arrange correct disposal.

    Incident report forms are carefully analyzed by EH&S with the results distributed to all who might benefit. EH&S Safety Bulletins are the most common means of such distribution. (See the attached sample, Appendix I).

    MERCURY SPILLS: Regardless of the size of the spill, you must contact EH&S. EH&S has a mercury vapor analyzer to measure airborne concentrations of mercury and a vacuum designed specifically to clean-up mercury spills. For tiny amounts (< 2 cc) of spilled mercury, use available mercury spill control kits or mercury spill amalgam to minimize vaporization while awaiting EH&S. Never use laboratory sinks or drains to dispose of mercury or mercury-contaminated waste.

    BIOHAZARD SPILLS: Quickly assess whether there are any injured persons and attend to any person who may have been contaminated. Remove contaminated clothing immediately and decontaminate. (EH&S is available for assistance in the selection of proper disinfectants.)

    Go to Top

    Close the laboratory door.

    Follow the notification procedures for your laboratory. In case of small spills (<1L), follow the departmental "chain of notification personnel" procedures. Report large spills (>1L) to Security (x99) who will then coordinate spill response with EH&Soffice.

    To clean up the spill and decontaminate the area, wear personal protective equipment (labcoat, mask, goggles and 2 pairs of gloves) and:

    1. Cover spill area with an absorbent material;
    2. Apply a 1:10 sodium hypochlorite (household bleach) solution directly to the spill area;
    3. Allow the solution to remain for at least 30 minutes before rinsing;
    4. Dispose of all material using a mechanical device such as forceps and place in autoclavable BIOHAZARD BAG.

    RADlOACTlVE SPlLLS: (as excerpted from the "Radiation Safety Code of Columbia University, 4th Edition, 1987", pp. 8-9, which in its entirety applies to work with these substances):

    Minor Spills:

    1. NOTIFY: Notify persons in the area that a spill has occurred.
    2. PREVENT THE SPREAD: Cover the spill with absorbent paper.
    3. CLEAN UP: Use disposable gloves and remote handling tong. Carefully fold the absorbent paper and pad. Insert into a plastic bag and dispose of in the radioactive waste container. Also insert into the plastic bag all other contaminated materials such as contaminated gloves.
    4. SURVEY: With a low-range thin-window GM survey meter, check the area around the spill, hands, and clothing for contamination.
    5. REPORT: Report incident to the Radiation Safety Officer.

    Major Spills:

    1. CLEAR THE AREA: Notify all persons not involved in the spill to vacate the room.
    2. PREVENT THE SPREAD: Cover the spill with absorbent pads, but do not attempt to clean it up. Confine the movement of all personnel potentially contaminated to prevent the spread.
    3. SHIELD THE SOURCE: If possible, the spill should be shielded, but only if it can be done without further contamination or without significantly increasing your radiation exposure.
    4. CLOSE THE ROOM: Leave the room and lock the door(s) to prevent entry.
    5. CALL FOR HELP: Notify the Radiation Safety Officer immediately.
    6. PERSONNEL DECONTAMINATION: Contaminated clothing should be removed and stored for further evaluation by the Radiation Safety of finer. If the spill is on the skin, flush thoroughly and then wash with mild soap and lukewarm water.
    Go to Top

    LEAKING COMPRESSED CAS CYLINDERS: Occasionally, a cylinder or one of its component parts develops a leak. Such leaks often occur around the manifold in areas such as valve threads, safety device, valve stem, and valve outlet. If a leak is suspected, use a flammable gas leak detector or soapy water or other suitable solution. If the leak cannot be remedied by tightening a valve gland or a packing nut, follow the departmental notification procedures and also notify EHRS and the supplier. Laboratory employees should never attempt to repair a leak at the valve threads or safety devices.

    The following are generic standard operating procedures:


    Follow the notification procedures for your laboratory. Promptly alert the predetermined "chain of notification" personnel, i.e., graduate instructor, Project Director, Principal Investigator, etc.

    Flammable, inert or oxidizing gases: Move the cylinder to an isolated, well-ventilated area and, if possible, post warning signs describing the hazard and precautions to be taken.

    Corrosive gases: Corrosive gases may increase the size of the leak during release and some corrosives are also oxidizers or flammable. Move the cylinder to an isolated, well-ventilated area and, if possible, use suitable means to direct the gas into an appropriate chemical neutralizer. Post warning signs describing the hazard and precautions to be taken.

    Toxic gases: Move the cylinder to an isolated, well-ventilated area and use suitable means to direct the gas into an appropriate chemical neutralizer. Post warning signs describing the hazard and precautions to be taken.


    Malfunctioning laboratory equipment that presents a health and safety hazard, e.g. mantles that overheat, should be immediately removed from service and labeled as malfunctioning. The equipment should be promptly repaired or discarded.

    Facilities equipment failure such as circuit breaker overload, ventilating equipment, or door closers, should be reported to the Facilities Management Customer Service at x 4-2275.

    Go to Top


    Accidents or injuries that occur in the laboratory and that require medical treatment must be reported immediately to the Department or Administrative Unit and to EH&S. Accident records shall be written and retained. For any injury which appears to require emergency first aid, call Security (x99) and request an ambulance.

    Accidents and spills: Whenever there is skin or eye contact with a chemical, promptly flush the affected skin area with water and remove any contaminated clothing, and seek medical attention. Any clothing that has been significantly contaminated should be removed immediately.

    When there is acute inhalation of a hazardous material, escort victim to a source of fresh air; seek medical attention if necessary.

    Waste Disposal Program:

    The aims of the waste disposal program are to assure that minimal harm to people, other organisms, and the environment will result from the disposal of waste laboratory chemicals, as well as to ensure compliance with all applicable city, state and federal waste disposal regulations.

    As a generator of hazardous waste, the University is legally required to institute a hazardous waste minimization program to reduce the volume or toxicity of hazardous waste. All Departments and Administrative Units must reduce the volume or toxicity of hazardous waste whenever possible. Waste minimization methods include:

    Use purchasing methods to reduce the quantity and variety of products. Reduce to a minimum the number of different products used. Implement micro-level or small-scale operations. Order chemicals in smaller containers, and order only the amount of material needed for a project. Contact EH&S for a list of companies that will ship chemicals in small quantities, such as milligram amounts, at competitive prices.

    Substitute less toxic materials whenever possible. An example of substitution is the use of non-toxic, non-flammable scintillation cocktails.

    Properly segregate and consolidate wastes. Never mix a hazardous waste with a nonhazardous waste as this renders the whole mixture hazardous.

    Recycle, reclaim, and reuse hazardous materials whenever possible.

    Improve housekeeping practices to reduce the production of waste. For example, arrange for prompt repairs of leaking equipment or spill cleanup.

    Go to Top

    It is the responsibility of each department or Principal Investigator to develop and implement procedures to ensure safe, efficient and legal waste disposal practices, consistent with the University's hazardous waste program. Each Department will set up its own specific handling procedures in coordination with the EH&S office. The following procedures specify how waste is to be collected, segregated, stored, and removed:

    Deposit chemical waste in appropriately labeled waste containers. Waste containers must be clearly labeled with the chemical category (i.e., flammable solvents, corrosive, etc.), list of contents, and the name and telephone number of the generating research group.

    • Acceptable containers for waste are the following:
    • Flammable Solvents: glass bottles or 5-gallon metal cans
    • Chlorinated Solvents: glass bottles, 5-gallon metal cans (if nonaqueous), or polyethylene containers
    • Contaminated Acids: glass bottles or polyethylene containers
    • Contaminated Bases: glass bottles or 5-gallon polyethylene containers
    • Solids: Sealed beakers and/or plastic bags
    • Silica Gel: Double plastic bags
    • Broken Glass: Designated boxes or white cans
    • NeedleslSyringes: Approved disposable plastic containers
    • Solutions of Heavy Metals: Glass bottles Mercury: Capped container
    • Radioactive Wastes: black 5-gallon metal can with the universal radiation symbol

    Never mix incompatible materials in the same waste container. For example, do not mix acid and solvent waste. Segregate containers of incompatible materials.

    All hazardous waste disposal must be coordinated through EH&S. To initiate disposal of hazardous waste, send a completed Chemical Waste Disposal Request Form (see Appendix K) to the EH&S office. There are regularly scheduled bulk solvent and laboratory lab pack pick-ups. Special pick-ups can be arranged by EH&S as needed.

    Disposal of hazardous waste chemicals bv pouring them down the drain or by adding them to mixed refuse for landfill burial is absolutely forbidden! Such chemicals include: concentrated acids or bases organic solvents aqueous solutions containing toxic organic solutes heavy metals radioactive isotopes highly toxic, malodorous, or lachrymatory substances

    In addition, substances that might interfere with the biological activity of waste water treatment plants, create fire or explosion hazards, or cause structural damage or impede water flow must not be poured down the drain. If there is any doubt as to what chemicals may go down the drain or into the solid refuse stream, contact the EH&S office for assistance.

    Fume hoods must not be used for evaporative disposal of volatile chemicals.

    Unlabeled containers of chemicals and solutions should undergo prompt disposal; if partially used, they should not be reopened since some substances form unstable decomposition products.

    Before the termination of a research project, chemicals that have been used or processed during the project must be properly disposed of or returned to storage. This procedure should be coordinated through the Departmental Office or Administrative Unit with EH&S. Responsibility and payment for proper disposal of all accumulated hazardous chemicals will subsequently devolve on the department, school, or unit.

    EH&S -approved disposal by recycling, consolidation, or chemical decontamination or deactivation (neutralization, precipitation, etc.) should be used whenever possible.

    Empty, uncapped chemical containers, free of visible residue and contamination, can be placed in the hallway to be taken out with the regular trash.

    Go to Top

    Employee Information and Training:

    A comprehensive training program is the single most important aspect of employee protection. The aim of the institutional training program is to ensure that all individuals at risk are adequately informed about the operations and substances in their laboratory, their risks, and what to do if an accident occurs.

    Department and Administrative Units are required to provide health and safety training and information to their laboratory employees.

    The EH&S office provides university-wide assistance to accomplish this goal. Employee training shall include the methods and observations that may be used to detect the presence of hazardous chemicals in the work area, including the control measures Columbia University has instituted; the physical and health hazards associated with chemicals in the work area; appropriate protection measures including emergency procedures; and the details of the Columbia University Chemical Hygiene Plan. Copies of the Chemical Hygiene Plan have been distributed to every laboratory and Principal Investigator; additional copies are located in Departmental Offices and the EH&S Office. All training must follow the training outline in Appendix L.

    In addition, it is the responsibility of the Principal Investigator to inform his/her laboratory employees of specific hazards related to the work or research conducted in his/her laboratory, as well as any associated methods of control for dealing with those specific hazards.

    All employees must be trained at the time of initial assignment and prior to the use of a new hazardous chemical or procedure. Refresher training shall be determined by the Principal Investigator.

    All training must be documented and contain the following information:

    i) Date, location, length of training program
    ii) Employee name, signature and Social Security Number
    iii) Training outline Copies of all training documentation must be sent to the EH&S of fine for evaluation and record retention.

    Go to Top

    Peer Review of Proposed Projects:

    Certain kinds of research, because of the materials, equipment, or operations they require, or because of the disposal materials they generate, or for other reasons, may present issues of laboratory safety that require prior approval of the Laboratory Safety Committee.
    The Committee itself shall develop criteria to identify such projects, as well as mechanisms to insure enforcement of such procedures it shall be devised, not later than 31 April 1991, which shall thereupon become part of this Policy.

    Policy Enforcement:

    In order to assure compliance with the mandated policies of the Columbia University Laboratory Safety Policy, a series of corrective actions will address policy infractions in order to provide a mechanism to ensure compliance. Poor safety practices and inadequate counseling and training can result in personal injury, property damage, legal liabilities, and lost productivity.

    Any practice that violates any provision of this Policy must be immediately reported to the Chemical Hygiene of finer, who may refer it to the Chair of the Laboratory Safety Committee, for appropriate action which may lead to cessation of laboratory op erations, revocation of laboratory privileges, and/or termination of employment.

    Go to Top



    Laboratory Standards January 18,1991

    I. Chemical Inventory/Storage

    All chemical containers should be clearly labeled and stored according to the following regulations:

    1. Flammable Liquids
    Liquids flashing below 100 F (acetone, hexane, etc.); bottles have red labels
    Maximum of 15 gal/lab (Chandler) and 25 gal/lab (Hav), including waste solvent If stored in refrigerator, refrigerator must be explosion proof

    2. Flammable Solids
    White phosphorus, sodium, potassium, etc.: Maximum of 3 Ibs. per lab

    3. Oxidizing Materials
    Chlorates, permanganates, peroxides, nitrates, etc.: Maximum of 20 Ibs. per lab
    Store away from flammable materials

    4. Unstable/Reactive Materials
    Organic peroxides, nitromethane, ammonium nitrate, etc.; Maximum: 2 Ibs./lab
    Expiration dates should be given on Peroxides, Picrics, Perchlorates, Ethers
    "Water-reactive" chemicals should be stored in separate, labeled cabinets

    5. Gases
    Compressed gas cylinders (including empties) must be secured in upright position with chains, straps, or special stands; capped if not in use

    Compressed flammable gases (Hoot hydrocarbons) cannot be stored; must be in ongoing operation
    Poisonous and flammable gases require signs at lab entrance
    Maximum of about 8 large cylinders of flammable gases per lab

    6. Acids & Bases

    Should be stored separately
    Store nitric acid on plastic away from other acids, bare metals, and wood.

    7. Radioactive/Biohazardous Material

    Store in labeled areas

    II. Waste Management

    Waste containers should be clearly labeled with:

    1) Chemical Category (e.g. flammable solvents)
    2) List of Contents/Date
    Name of Research Group and Telephone Number

    Go to Top

    Acceptable containers for waste are as follows:

    1. Flammable Solvent glass bottles or 5-gallon metal cans
    2. Chlorinated Solvent glass bottles, 5-gallon metal cans (if nonaqueous), or polyethylene containers
    3. Contaminated Acid: glass bottles or 5-gallon polyethylene containers
    4. Contaminated Base glass bottles or 5-gallon polyethylene containers
    5. Solids Beakersand/orplasticbags
    6. Silica Gel: Double plastic bags
    7. Glass: Designated white cans
    8. Needles/S,vringes: Approved disposable plastic containers
    9. Solutions of Heavy Metals: Glass bottles
    10. Mercury: Capped container
    11. Radioactive: Special containers (Health Physics: ;4442)

    Laboratory Standards

    III. Safety/Emergency Response

    The following items should be available in each laboratory:

    1. Safety Shower within 25 ft. of any point in the lab
    2* Eyewash
    3. ABC and/or CO2 Fire Extinguishers (Charged): by door/within 50 ft. of any point in the lab
    4. Fire Blanket mounted near safety shower
    5. First Aid Kit wall-mounted near safety shower or in Chandler hallways and containing: finger bandages, large bandages, gauze/tape, antiseptic, bum spray, aspirin, cotton, eye dressing packet, tweezers, scissors, first aid manual.
    6. Spill Control Equipment Sodium bicarbonate for acid spills Boric add for base spills Pads/pillows for solvent
    7. Visitor Safety Glasses Dispenser Mounted in Chandler hallways or inside Havemeyer labs; Laser labs should be designated with signs and should have appropriate goggles available
    8. Gloves, Shields, Aprons available in labs
    9. Broom and Dustpan
    10. Emergency Telephone Numbers: stickers on all phones

    IV. Housekeeping

    Safe laboratory working conditions require:

    Clear Walkways No slipping/tripping hazards such as bottles on the floor or extension cords across walkways Unobstructed exits

    Ready Access to Safety Equipment Unobstructed fire extinguishers, eyewashes, safety showers

    Equipment in Safe Operating Condition, including Electrical wires in good condition Pumps/Hg bubblers vented to fume hoods Belt guards on pumps All equipment electrically grounded Outlet strips off the floor Refrigerators properly designated (food/chemicals/flammables)

    "Reasonably neat/clean counter tops and shelves

    Go to Top



    Absorption - 1) The penetration of a substance into the body of another
    2) The process of soaking up or taking up hazardous substances to prevent enlargement of the contaminated area

    Action level - a concentration designated by OSHA for a specific substance, and calculated as an 8-hour time-weighted average, which initiates certain required activities such as exposure monitoring and medical surveillance

    Acute effect - An adverse effect upon the human body following a short exposure to a dangerous substance or materials. An acute reaction or illness occurs immediately after exposure or over a short term (usually less than 24 hours)

    ACGIH - American Conference of Governmental Industrial Hygienists; a professional organization composed of personnel in governmental agencies or educational institutions engaged in occupational safety and health/industrial hygiene programs ; develops and publishes recommended occupational exposure limits (TLVs) for hundreds of chemical substances and physical agents

    Acid - a corrosive compound with a low pH (6.0 or below), which in the presence of certain solvents or water, reacts to produce hydrogen ions; turns litmus paper red; reacts with an alkali (base) to form a salt and water

    Aerosols - suspension of liquid droplets or solid particles in air so small as to remain dispersed for a period of time

    Alkali - corrosive compounds with a high pH (8.0 or above) which have the ability to react with an acid to form a salt and water; also referred to as bases; alkali splashes in the eyes are potentially more damaging than acid eye splashes; alkalies turn litmus paper blue

    Alkali metals - water-reactive metals such as lithium, sodium, potassium, magnesium, calcium and berrylium

    Alpha particles - particulate ionizing radiation consisting of helium nuclei (two protons and two neutrons) traveling at high speed; extremely toxic if inhaled or ingested

    Anhydrous - free from water; ex: anhydrous ammonia

    Asbestos - a naturally-occurring mineral used extensively in fireproofing, as an insulator against heat, cold, noise and electricity and as a reinforcing agent; defined by the Environmental Protection Agency as any material containing more than 1 percent asbestos by weight

    - suffocation from lack of oxygen; simple asphyxiants such as nitrogen displace oxygen and are harmful to the body when they become so concentrated that they reduce the normal oxygen concentration in the air to dnagerou s levels; chemical asphyxiants such as hydrogen cyanide combine with hemoglobin to reduce or prevent the blood from transporting oxygen

    Autoignition temperature - the minimum temperature at which a material will ignite without an lgnltlon source

    Go to Top

    Beta particles - high speed electrons produced from radioactive decay which have the ability to penetrate skin and clothing

    Biocide - any substance designed to destroy living organisms such as insecticides, pesticides, and herbicides; when absorbed will cause illness or death or growth retardation or shortening of life

    Biohazard - biological hazard; infectious agents presenting a risk or potential risk to the well being of humans or other animals either directly through infection or indirectly through disruption of the environment

    Biological hazardous wastes - substances of human or animal origin, other than food wastes, which are to be disposed of and could harbor pathogenic organisms including, but not limited to, pathological specimens such as tissues, blo od elements, excreta, secretions and related substances; includes wastes from health care facilities and laboratories

    BLEVE - Boiling Liquid Expanding Vapor Explosion; explosion believed to result from rapid depressurization of a hot, saturated liquid; the temperature of the hot liquid must be above the superheat limit temperature at 1 atmosphere, and the drop in (tank) pressure must be very rapid; this acronym has now come to stand for virtually any rupture of a tank of liquid or liquefied compressed gas and has been expanded to include all vapor explosions

    Boiling point - the temperature at which a liquid changes to vapor state at a given pressure usually at sea level; materials with low boiling points are fire and explosion hazards

    Breach - any opening in a hazardous materials container through which hazardous material can or does escape

    Go to Top

    Canister - air-purifying container filled with sorbents and catalysts that remove gases and vapors from air drawn through the air-purifying unit; the canister may also contain an aerosol (particulate) filter to remove solid or liquid parti cles

    Carbon monoxide - chemical asphyxiant; odorless, colorless toxic gas generated by any process involving the incomplete combustion of carbon-containing substance and is also a by-product of many chemical reactions

    Carboy - large glass bottle, up to 15 gallons, in a protective device, usually a crate; may also be a small plastic drum that ranges from 10 - 15 gallons

    Carcinogen - substance known or suspected of causing cancer; see "Select carcinogen"

    Catalyst - substance which changes the speed of a chemical reaction but undergoes no permanent change itself

    Caustic - A corrosive chemical with a high pH (basic or alkaline)

    Central Nervous System (CNS) -Body system made up of the brain and spinal cord.

    "C" or Ceiling -maximum concentration of a chemical, dust, or physical agent that is allowed at any time under federal standards, not to be exceeded even momentarily

    CAS - Chemical Abstracts Services; a Columbus, Ohio organization which indexes information published in "Chemical Abstracts" by the American Chemical Society and provides index guides by which information about particular substan ces may be located in the Abstracts when needed; CAS numbers identify specific chemicals but not every chemical has been assigned a CAS number

    cc - cubic centimeter; equal in capacity to one milliliter; a volume measurement in the metric system

    CDC - Center for Disease Control; a federal agency located in Atlanta, Georgia responsible for health activities under the Environmental Protection Agency's Superfund for cleaning up hazardous wastes; offers advice on decontamination, medi cal surveillance, and treatment of contaminated victims; maintains hotline (404) 329-3311 from 8 AM to 5 PM (EST) and (404) 329-2888 evenings and weekends

    CERCLA - Comprehensive Environmental Response, Compensation and Liability Act (1980); "Superfund"

    CGA - Compressed Gas Association

    Chemical Name - The correct name that fully defines the chemical composition of a substance. "silica" and "ethyl cyanoacetate" are chemical names; "infusorial earth" and "cyanoacrylate adhesive" are generic names, and "Celite" and "Peavey Print Superglue" are trade names. The generic name is frequently referred to as the exact description, but it actually refers to categories such as metals or solvents

    Chemical cartridge - type of absorption unit used with an air- purifying respirator for removal of vapors and gases; for example organic vapor cartridges are used for organic vapors such as toluene; acid gas cartridges are used for hydrogen chloride gas, etc.

    Chemical hygiene officer - an employee who is designated by the employer, who is qualified by training or experience, to provide technical guidance in the development and implementation of the provision of the Chemical Hygiene Plan

    Chemical hygiene plan - a written program developed and implemented by the employer which sets forth procedures, equipment, personal protective equipment and work practices that are capable of protecting employees from the health ha zards presented by hazardous chemicals used in that particular workplace

    Chemical protective clothing (CPC) - personal protective clothing designed to provide some level of skin protection against chemical exposure

    CHEMTREC - Chemical Transportation Emergency Center; a national center established by the Chemical Manufactureres Association (CMA) in Washington, DC in 1970 to relay pertinent emergency information concerning specific chemicals on request . CHEMTREC has a 24-hour toll free telephone number (800) 42s9300 intended primarily for use by those who respond to chemical transportation emergencies

    Chlorates - powerful oxidizers containing chlorine and oxygen

    Chromosome - Part of the cell's genetic material. Damage to chromosomes can cause harmful changes to an individual's body and may also result in birth defects

    Chronic Effect - An adverse effect upon the human body which develops from a long-term or frequent exposure to a harmful substance such as a carcinogen. Chronic effects or diseases may not show up for years after exposure

    CMA - Chemical Manufacturers Association

    Combustion - process in which fuel is rapidly oxidized; requires fuel, oxygen, and heat (ignition source) and usually produces heat and light or other forms of energy

    Combustible - term used by NFPA, DOT, OSHA to classify by Cashpoints certain liquids that will burn; generally defined as liquids that have Cashpoints above 100 F. and below 200 F

    Combustible liquid (OSHA) - has a flash point at or above 100 F and below 140 F.; combustible liquids have higher flash points than do flammable liquids

    Combustible liquid (DOT) - has a flash point 100 F to 200 F

    Combustible gas detector (CGI) - portable, battery-powered field survey instrument used to detect the presence of combustible gas mixtures by measuring 0 to 100% of the Lower Explosive Limit (LEL)

    Compatibility chart - chart that compares the chemical resistance of a protective clothing material against exposure to a specified chemical; generally provides degradation, penetration and permeation information

    Compressed gas - material packaged in a cylinder, tank or aerosol under pressure exceeding 40 psi at 70 f or other pressure parameters as identified by the US DOT

    Concentration - the relative amount of a substance when combined or mixed with other substances; Example: 50 micrograms of lead in one cubic meter of air is the concentration. (50 ug/m3)

    Contaminant - Poison, toxic substance - anything that makes air or water dirty or unfit for human consumption

    Contact Dermatitis - (See Dermatitis) Dermatitis of the skin due to direct contact with irritating substance.

    Corrosive - a material that degrades or destroys living tissue or other materials;; liquids that have a severe corrosion rate on steel may be regulated by DOT example: hydrofluoric acid

    Cryogenic gas - cryogen comes from the Greek work kyros which means icy cold; cryogens are gases that must be cooled to less than -150 0F before they can be liquiefied

    Cylinder - container having 1000 pounds or less in accordance with DOT specifications and generally includes any compressed gas or liquefied gas container

    Go to Top

    Dangerous When Wet - label required for certain shipped materials under DOT, ICAO, and IMO regulations; such materials may produce flammable gases when in contact with water or moisture and in some cases these gases are likely to sp ontaneously combust

    DCM - Dangerous Cargo Manifest

    Daughter - isotope formed by the decay of a given radioactive isotope; the daughter may be radioactive or stable

    Decontamination - the removal and containment of hazardous materials by physical and chemical means

    Degradation - the movement of a liquid through chemical protective clothing resulting in the molecular breakdown of the CPC due to contact with the liquid; signs of degradation include swelling, weight changes, and color changes; de gradation charts (excellent, good, fair, poor) tell how long the clothing will last

    Dermal toxicity - adverse effects resulting from skin exposure to a substance

    Dermatitis - Inflammation of the skin, such as redness, rash, dry or cracking skin, blisters, swelling, or pain. May result from exposure to toxic or abrasive substances

    Designated area - an area which may be used for work with "select carcinogens", reproductive toxins or substances which have a high degree of acute toxicity; a designated area may be the entire laboratory or a device such as a laboratory hood

    Dilution - method of reducing the concentration of a chemical, usually through the use of water, except when the possibility of a chemical reaction exists

    Disposal drum - used to refer to overpack drums; proper DOT shipping name is Salvage drum

    DOT - Department of Transportation; regulates transportation of chemicals and other substances

    DOT Hazard Classifications - designations for specific classes of hazardous materials; example: Flammable Liquid

    DOT Identification Number - four-digit identification number assigned to a ha_ardous material by the DOT

    Dose - the amount of energy or substance absorbed in a unit volume or an organ or individual

    dps - disintegrations per second

    Dust - Airborne solid; particles that are created by work processes, such as grinding

    Go to Top

    Ecology - branch of science concerned with the interrelationship of organisms and their environment

    Edema - a swelling of body tissues due to fluid retention

    Emergency - any occurrence such as, but not limited to, equipment failure, rupture of containers or failure of control equipment which results in an uncontrolled release of a hazardous chemical into the workplace

    EPA - Environmental Protection Agency; federal agency which regulates and enforces protection of the environment; administers Clean Air Act, Clean Water Acts CERCLA, FIFRA, RCRA, TSCA and other federal environmental laws

    Epidemiology - the science that deals with the study of disease (epidemics) in a population

    ERT - Environmental Response Team; a group of highly trained, specialized experts available through EPA's 24-hour hotline

    Etiologic agent - microorganisms or their toxins wheich may cause human disease or contaminate the environment

    Evaporation rate - the rate at which a particular material will evaporate (vaporize) when compared to the rate of vaporization of a known material, generally butyl acetate or ethyl ether

    Engineering controls - prevention of worker exposure to contaminants by work process changes or ventilation, rather than by requiring workers to wear protective equipment. PESH regulations require that exposure to airborne contamina nts be addressed wherever possible by engineering controls rather than by the use of respirators

    Exhaust Ventilation - Removes air contaminants from workplace air by sucking them away from the breathing zones of workers by means of hoods, canopies, or ducts. Exhaust ventilation is the most efficient means of controlling air con taminants because it moves smaller air volumes with less heat loss (in winter) than general exhaust ventilation

    Explosion-proof equipment - equipment enclosed in solid casing that will not provide an ignition source in the presence of flammable atmospheres

    Explosive - any chemical compound, mixture or device functioning primarily by detonation or deflagration

    Explosive, Class A - any of nine types of explosives as defined by DOT (Title 49 CFR 173.53 and CFR 172.101); any chemical compound, mixture or device having the primary or common purpose to function by detonation with substantial i nstantaneous release of gas and heat

    Explosive, Class B - explosives as defined by DOT (Title 49 CFR 172.101 and CFR 173.88);explosives that function by rapid combustion rather than detonation; includes special fireworks, flash powders, some pyrotechnic signaling devic es, and solid or liquid propellant explosives

    Explosive, Class C - certain types of explosives as defined by DOT (Title 49 CFR 172.101 and CFR 173.100) that contain Class A or Class B explosives, or both, as components, but in restricted quantities, as well as certain types of fireworks

    Explosive Level - The concentrations of gas in air which can explode. It is usually expressed as a range between a "lower explosive level" (LEL) and an "upper explosive level" (UEL). It is commonly measured by an explosimeter which reads out the concentration of a possibly dangerous gas in percent per volume

    Exposure - When a worker takes in a toxic substance by breathing, eating, skin absorption or other means, he or she is exposed to that substance. Exposure is measured over time and in amounts (dose).

    Go to Top

    Film badge - a pack of photographic film and filters used to determine radiation exposure

    Flammable gas - a gas that, at ambient temperature and pressure, forms a flammable mixture with air at a concentration of 13 percent by volume or less; or a gas that, at ambient temperature and pressure, forms a range of flammable m ixtures with air wider than 12 percent by volume, regardless of the lower limit

    Flammable liquid - as defined by OSHA, any liquid with a flash point below 1000F, except

    any mixture having components with flashpoints of 1000F or higher, the total of which make up 99 percent or more of the total volume of the mixture

    Flammable solid - any solid material, other than one classed as an explosive, that under normal conditions is liable to cause fire through friction or retained heat from manufacturing or processing; or can be ignited readily, and wh en ignited burns so vigorously and persistently as to create serious storage hazards; defined by DOT in Title 49 CFR 173.150; flammable solids ignite easily and burn with explosive violence

    Flanunable Range - the range of a gas or vapor concentration (percent by volume) that will burn or explode if an ignition source is present; the range of concentrations between the lower flammable (explosive) limit (LFL/LEL) and the upper flammable (explosive) limit (UFL/UEL)

    Flash point - the minimum temperature at which a liquid will give off enough vapors to form an ignitable mixture with air

    Friable - capable of being crushed by hand as relates to asbestos; friable asbestos becomes easily airborne

    Fully encapsulating suits (YES) - full chemical protective suits offering full body protection from chemicals having both toxic inhalation and dermal effects; includes self-contained breathing apparatus and/or airline respiratory pr otection

    Fume - small hot particles that become airborne and condense when a solid material is heated or burned. Example: Welding with lead solder creates lead fumes

    Go to Top

    Gamma radiation - high energy electromagnetic radiation

    Gas - A chemical that is normally airborne at room temperature, rather than solid or liquid. Examples: Carbon monoxide, hydrogen sulfide.

    General Ventilation - Lessens airborne contamination by diluting workplace air by ceiling or window fans

    Generic Name - The correct name for a whole group or class of substances which have similar characteristics

    Hazard Abatement - The process of controlling and eliminating hazards.

    Hazard class - a category of hazard associated with hazardous materials or hazardous waste that may be an unreasonable risk to health, safety and property when transported; the DOT hazard classes are: Explosive (Class A, B and C), F lammable Liquid, Flammable Solid, Corrosive Material, Oxidizer, Poison A, Poison B. Radioactive Material, Nonflammable Gas, ORM-A, ORM-B, ORM-C, ORM- D, ORM-E, Etiologic Agent, Irritating Material, Organic Peroxide, Combustible Liquid, Flammable Gas, and Blasting Agent

    Health Hazard - Any type of job-related noise, dusts, gases, toxic chemicals, substances, or dangerous working conditions which could cause an accident, injury, disease or death to workers

    Hazardous chemical - a chemical for which there is statistically significant evidence based on at least one study conducted in accordance with established scientific principles that acute or chronic health effects may occur in expos ed employees; includes chemicals which are carcinogens, toxic or highly toxic agents, reproductive toxins, irritants, corrosives, sensitizers, hepatotoxins, nephrotoxins, neurotoxins, agents which act on the hematopoietic systems, and agents which damage the lungs, skin, eyes, or mucous membranes

    Hazardous material - any substance or mixture of substances that poses an unreasonable risk to health, safety or property

    Hazardous Waste - any material as defined by RCRA (Title 40 CFR 261, Subpart C and listed in Subpart D) that is corrosive, ignitable, reactive or toxic

    Hazardous Waste Manifest - the shipping document, originated and signed by the hazardous waste generator containing the information specified in Title 40 CFR 262, Subpart B

    Hepatitis - inflammation of the liver

    Herbicide - any poison that kills plant life or vegetation

    HMTA - Hazardous Materials Transportation Act (1975)

    Hypothermia - condition of reduced body temperature

    Go to Top

    Ignition temperature - minimum temperature of a substance at which combustion is initiated or self-sustained independent of the heating or heated element

    Incompatible - materials which could cause dangerous reactions from direct contact with one another; example: sodium cyanide and hydrochloric acid react to form the highly toxic hydrogen cyanide gas

    IDLH- Immediately Dangerous to Life and Health; represents the maximum concentration of a substance in air from which, in the event of respirator failure, one could escape within 30 minutes without experiencing any escape-impairing or irr eversible health effects

    Ignitable - defined by EPA as having a Cashpoint less than 140 F.; a solid or liquid waste exhibiting a "characteristic of ignitability" as defined by RCRA may be regulated by EPA as a hazardous waste

    Industrial Hygiene - The technical specialty concerned with the recognition, evaluation, and elimination of workplace hazards. Industrial hygienists study ventilation techniques and other engineering controls, as well as methods for determining the identity and concentration of chemical, physical, and radiation hazards

    Infectious waste - waste that contains pathogens or consists of tissues, organs, body parts, blood and body fluids that are removed during surgery or other procedures; Title 42 CFR Part 72

    Inflammable - Means the same thing as flammable: a material that can burn easily

    Inflammation - A condition of the body or portion of the body characterized by swelling, redness, pain and heat

    Inhalation - The process of breathing something into the lungs

    Ingestion - The process of taking a substance through the mouth

    Inorganic compounds - compounds that do not contain the element carbon; example: water, sodium chloride

    Insecticide - a chemical product used to kill and control nuisance insect species

    Irritant - any substance producing inflammation at the site of contact; example: solvents, soap, detergents, acids, alkalies

    ISO- International Organization for Standardization

    kg- kilogram, a metric unit of weight, about 2.2 US pounds

    Go to Top

    Lethal- capable of causing death

    LC/50- Lethal Concentration/50; the concentration of a material which on the basis of laboratory tests is expected to kill 50 percent of a test population of animals when administered as a single exposure

    LC/low- Lethal concentration low; the lowest concentration of a substance in air, other than LC/50, which has been reported to have caused death in humans or animals

    LD/50- Lethal dose/50; a single dose of a material which on the basis of laboratory tests has been shown to kill 50 percent of a test population of animals; usually expressed as milligrmas or grams of material per kilogram of animal body weight

    LD/low- Lethal dose low; the lowest dose of a substance introduced by any route except inhalation, reported to have caused death in humans or animals

    Label (DOI) - diamond-shaped, square-shaped, or rectangular-shaped attachment to a package that identifies the hazardous nature of the material (Title 49 CFR Part 172, Subpart E)

    Laboratory - a generic term denoting a building, space, equipment to operations wherein testing, research or experimental work is conducted and shall include laboratories used for instructional purposes; a facility where relatively small quantities of hazardous chemicals are used on a nonproductive basis

    Laboratory building - a structure consisting wholly or principally of one or more laboratory units

    Laboratory scale - work with substances in which the containers used for reactions, transfers, adn other handling of substances are designed to be easily and safely manipulated by one person

    Laboratory unit - an enclosed, fire-rated space used for testing, research, experimental or educational purposes; laboratory units may or may not include offices, lavatories, and other contiguous rooms maintained for or used by, lab oratory personnel, and corridors within the units and may contain one or more separate laboratory work areas

    Laboratory work area - a room or place within a laboratory unit for testing, analysis, research, instruction or similar activities which involve the use of chemicals or gases and may or may not be enclosed

    Latent period - the time which elapses between exposure and the first sign or manifestation of damage

    LEL or LFL - Lower Explosive Limit or Lower Flammable Limit; the minimum concentration of a gas or vapor in air that will produce a flash of fire when an ignition source is present; at concentrations below the LEL, the mixture is too lean to burn

    Local Effect - Means that the action of the chemical takes place at the point of contact, such as dermatitis caused by skin contact with solvents. (Compare with systemic effect)

    Go to Top

    Marking - applying the required descriptive name, instructions, cautions, weight, or specifications or combination thereof on containers of hazardous materials or hazardous waste (Title 49 CFR 171.8)

    Melting point - the temperature at which a solid substance changes to a liquid state; for mixtures, the melting range may be given

    Mg/M3- Milligrams per cubic meter of air. A unit for measuring the amount of a chemical or substance in the air. 1000mg equals one gram

    Microorganism - a living organism not discretely visible to the unaided eye; example: bacteria, fungi

    Mitigate - to lessen or reduce the adverse effects of a hazardous materials incident

    Mist- Airborne liquid droplets that are created by a gas going into the liquid state or by a liquid being splashed, foaming or atomized. Examples: oil mist from cutting, grinding, or from pressure; paint mists from spraying

    ml - milliliter, a metric unit of capacity, equal in volume to one cubic centimeter or about 1/16 of a cubic inch

    mm- millimeter, a metric unit of length, equal to 1/1000 of a meter or about 1/25 of an inch

    SDS - Material Safety Data Sheet; a chemical fact sheet required by OSHA to be generated by the manufacturer and shipped downstream to all employer/users of hazardous products; contains information on the specific identity of hazardous in gredients, health effects, first aid, chemical and physical properties, spill response, personal protective equipment, etc.

    Mucous Membrane - The moist, soft covering of the nose, mouth, and lining of eyes

    Mutagen - substance capable of causing genetic damage

    Mutation - A change (usually harmful) in the genetic material of a cell. When it occurs in the sperm or egg, the mutation can be passed on to future generations

    Go to Top

    NA number - North American identification number; NA preceding a four-digit number indicates that this identification number is used in the United States and Canada to identify a hazardous material in transportation

    Narcosis - destruction of body tissue

    Neutralization - the process by which acid or alkaline properties of a solutions are altered by the addition of certain reagents to bring the pH to 7, the value of pure water; sodium bicarbonate is commonly used to neutralize acid s pills

    Neutralize - to make harmless anything contaminated with a chemical agent

    NFPA- National Fire Protection Association, an international voluntary membership organization to promote and improve fire protection and prevention and establish safeguards against the loss of life and property by fire; best known for th e National Fire Codes (16 volumes)

    NFPA Hazard Classification - the numerical designations of relative accident potential at fixed sites based on probable outcomes should an accident occur

    NIOSH- National Institute for Occupational Safety and Health of the US Department of Health and Human Services (DHHS); federal agency which conducts occupational health and safety research, tests and certifies respiratory equipment and ai r sampling detector tubes, recommends occupational exposure limits and assists OSHA and MSHA in safety and health investigations

    Nitrates - compounds conteuning oxygen and nitrogen, many of which are potent oxidizers; react with paper and wood products to form combustible compounds; example: nitric acid reacts with wood to form nitrocellulose

    Nonflammable gas - any material or mixture in a cylinder or tank having an absolute pressure

    exceeding 40 psi at 700F, or exceeding 104 psi at 1300F (Title 49 CFR and CGA); nonflammable gases will not form a flammable mixture in air but may support combustion

    NPIN- National Pesticides Telecommunications Network; a national pesticide poison control center restricted to use by health professionals; assists in diagnosing and managing pesticide poisoning 24 hours a day

    Nuisance dust - generally non-toxic dust but may be irritating at high concentrations

    Go to Top

    Olfactory - relating to the sense of smell

    Organic peroxide - very reactive and unstable organic compounds containing the -O-O (oxygen) structure and which may be considered to be a structural derivation of hydrogen peroxide where one or both of the hydrogen atoms has been r eplaced by an organic radical; organic peroxides heated above their transportation temperatures are likely to explode

    ORM(A-E) - Other Regulated Materials as defined by DOT

    OSHA- Occupational Safety and Health Administration of the US Department of Labor; federal agency which regulates and enforces safety and health for most US industries and businesses and public employers in those states with state-approve d OSHA plans

    Overpack - an enclosure used to provide protection or convenience in handling a package or to consolidate two or more packages

    Oxidizer - a chemical other than a blasting agent or explosive that initiates or promotes combustion in other materials, causing fire of itself or through the release of oxygen or other gases

    Oxidizing agent - a chemical which brings about an oxidation reaction; the agent may provide the oxygen to the substance being oxidized or it may receive electrons being transferred from the substance undergoing oxidation; example: chlorine contains no oxygen but is a very good oxidizing agent for electron-transfers

    Go to Top

    Pathogen - any microorganism capable of causing disease

    PCB - Polychlorinated biphenyl

    PCOcontaminated electrical equipment - any electrical equipment, including transformers, that contains at least 50 PPM but less than 500 PPM PCB (Title 40 CFR 761.3)

    PCB item - any item containing PCBs at a concentration of 50 PPM or more (Title 40 CFR 761.3)

    PCB transformer - any transformer that contains PCBs at a concentration of 500 PPM or more (Title 40 CFR 761.3)

    PCDF - Polychlorinated dibenzofurans; a class of very toxic chemical compounds occurring as a result of thermal degradations of PCBs

    Pesticide - a poison that kills small pests, especially rodents and insects

    PF - protection factor referring to the level of protection offered by respiratory equipment; the higher the PF, the more protective the respirator

    pH - the symbol of hydrogen ion concentration; ph of?. is neutral while higher values (greater than 7.0) indicate alkalies and lower values (less than 7.0) indicate acidity

    PEL - Permissible exposure level; the numerical level of a chemical or substance above which a worker cannot legally be exposed. Example: the PEL for lead exposure is 50 ug/m3 for a forty-hour week.

    Penetration - refers to the bulk movement of a liquid through personal protective equipment openings such as zippers, seams, pinholes, etc.

    Permeation - the movement of a substance on the molecular level; the process by which a chemical dissolves into the CPC material and evaporates on the other side; permeation data reveals how safe chemical protective clothing is to w ear while degradation data reveals how long the clothing will hold up

    Pig - a lead container used to ship radioactive materials

    Peroxides - highly reactive and unstable compounds; powerful oxidizing agents

    Physical hazard - a chemical for which there is scientifically valid evidence that it is a combustible liquid, a compressed gas, explosive, flammable, an organic peroxide, an oxidizer, pyrophoric, unstable (reactive) or water-reacti ve

    Placard - a DOT-regulated sign that identifies hazardous materials on large containers such as tanker trucks and railroad tank cars

    PPE/Personal Protective Equipment - Devices worn by workers to protect them against work-related hazards such as air contaminants, falling materials, and noise. While it is important to wear such equipment when required, it should b e remembered that these devices usually only provide minimal protection to workers and should only have to be worn when all other efforts have been initiated to correct an unsafe working environment. Examples of personal protective equipment include hard hats, ear plugs, respirators and steel-toe work shoes

    Pneumoconiosis - pulmonary disease caused by the inhalation of toxic dusts

    Pneumonitis - inflammation of the lungs characterized by an outpouring of fluid in the lungs; pneumonia is the same condition but involves greater quantities of fluid

    PPM - Abbreviation for parts per million; the ratio of the amount of a substance to the amount of air. one part benzene vapor per million parts of air is 1 ppm

    Poison Class A - poisonous gases or liquids of such a nature that a very small amount mixed with air is dangerous to life (Title 49 CFR 173.326) Examples: phosgene, nitrogen peroxide; shipping containers for poisons do not have pressure re lief devices and may BLEVE under fire conditions

    Poison Class B - a DOT term for substances (other than Class A poisons) which are so toxic as to present a health hazard during transportation (Title 49 CFR 173.343)

    Poison Control Centers - nationwide network of poison control centers set up by the Food and Drug Administration and the Department of Health and Human Services; usually established in local hospitals

    Polymerization - a chemical reaction in which one or more small molecules combine to form larger molecules; hazardous polymerizations are ones which take place at such a rate that large amounts of energy are released

    psi- pounds per square inch; a unit measuring the pressure a material exerts on the walls of a confining vessel or enclosure

    Pyrophoric - a chemical that will ignite spontaneously in air at a temperature of 130 F. or less

    rad- a unit for the measurement of radioactivity; one rad is the amount of radiation that results in the absorption of 100 ergs of energy by 1 gram of material

    Go to Top

    Radioactive - any type of substance that liberates radioactive particles or energy due to unstable atoms that have disintegrating nuclei

    RAM- radioactive material; may be subject to the licensing requirements of Title 10 CFR

    RCRA- Resource Conservation and Recovery Act, a federal law administered by the EPA regulating disposal of all wastes; manages hazardous wastes through a "cradle to grave" tracing system by controlling their generation, treating , storage, transportation and disposal

    Reaction- a chemical transformation or change; the interaction of two or more substances to form new substances

    Reactivity - tendency of a substance to undergo a chemical reaction with the release of energy; also a RCRA classification for hazardous waste triggering regulation

    Recovery drum - drum used to overpack damaged or leaking hazardous materials

    Reducing agent - the substance that combines with oxygen or loses electrons in an oxidation-reduction reaction

    rem- a measure of radiation dose meaning roentgen equivalent man; calculated by multiplying the dose in rads by the relative biological effectiveness of the radiation considered

    Reportable quantity - substances in quanitities listed by DOT or EPA that must be reported; specified by DOT in Title 49 CFR 172.101 or by EPA in Title 40 CFR 173

    Residue - defined by DOT as the hazardous material remaining in a packaging after its contents have been emptied and before the packaging is refilled, or cleaned and purged of vapor to remove any potential hazard (Title 49 CFR 171.8 ); empty poison containers are very dangerous due to remaining residue

    Risk - the probability that damage to life, property and/or the environment will occur if a hazard manifests itself

    Roentgen- measure of the charge produced as rays pass through the air

    Go to Top

    Salvage drum - drum with a removable metal head used to transport damaged or leaking hazardous materials for repackaging or disposal

    SARA- Superfund Amendments and Reauthorization Act of 1986

    SCBA- self-contained breathing apparatus

    Select carcinogen - any substance which meets one of the following criteria: 1) it is regulated by OSHA as a carcinogen; or 2) it is listed under the category "Known to be carcinogens" in the Annual Report on Carcinogens p ublished by the National Toxicology Program (NTP); or 3) it is listed under GROUP l ("Carcinogenic to humans") by the International Agency for Research (IARC) Cancer Monographs; or 4) it is listed in either GROUP 2A OR 2B by IARC or under the ca tegory "Reasonably anticipated to be carcinogens" by NTP, and causes statistically significant tumor incidence in experimental animals in accordance with any of the following criteria: a) after inhalation exposure of 6-7 hours per day, 5 days pe r week, for a

    significant portion of a lifetime to dosages of less than 10 mg/M3; b) after repeated skin application of less than 300 mg/kg of body weight per week; or c) after oral dosages of less than 50 mg/kg of body weight per day

    Sensitizer- A substance that causes an individual to react when subsequently exposed to the same or other irritant, as in a skin reaction or allergy.

    Short-Term Exposure Limit (STEL) - A standard for the permissible occupational exposure limit for a brief (not over 15 minutes) period. Usually only four short exposures a day are permitted, each at least 60 minutes apart.

    "SKIN" - a notation sometimes used with the PEL or TLV to indicate a substance readily absorbed through the skin; this additional exposure must be considerd part of the total exposure to avoid exceeding the PEL or TLV

    Smoke- an air suspension (aerosol) of particulates, often originating from combustion or sublimation

    SOP- Standard Operating procedures

    Solubility in water - term expressing the percentage of a material by weight that will dissolve in water at ambient temperature

    Solution- mixture of one or more substances in another substance, usually a liquid in which all the ingredients are dissolved

    Spontaneously combustible - solids or liquids capable of spontaneously heating or igniting

    Solvent- A substance (usually a liquid) capable of dissolving another.

    Stability - ability of a material to remain unchanged; a material is stable if it remains in the same form under expected and reasonable conditions of storage and use

    Storage room - a room where chemicals or gases regulated by the New York City Fire Department 1-66 Laboratory regulation are stored and not otherwise used or reacted

    Storage cabinet - a cabinet for the storage of not more than 60 gallons of flammable liquid which is designed and constructed in accordance with the OSHA General Industry Standards

    Superfund - the trust fund set up under CERCLA to provide money for hazardous waste cleanups

    Synergistic- Two or more agents that act together to produce a total effect greater than the sum of the separate effects.

    Systemic Effect - A chemical's effect on the body that takes place somewhere other than point of contact. For example, some pesticides are absorbed through the skin (point of contact), but affect the nervous system (site of action).

    Go to Top

    Teratogen- Substances or agents that cause birth defects or other abnormalities in offspring, when exposure occurs during pregnancy.

    Threshold- the level where the first health effects occur; also the point at which a person just begins to hear that a sound becoming audible

    Threshold Limit Value (TLV) -The recommended limit (by ACGIH) allowed for worker exposure to toxic chemicals, substances, and airborne contaminants. It is believed that a worker can be repeatedly exposed to the TLV without adverse e ffects.

    Time Weighted Average (TWA) An OSHA standard based on exposure over eight hours, using time-integrated sampling.

    Toxic- Poisonous; capable of causing any sort of injury to the body. This includes noise, radiation, heat, cold, along with chemical and mineral substances.

    Trade Name - Any arbitrary name a company chooses to use for a chemical or product for advertising reasons or in order to keep secret the ingredients. wFormacil" or WMethotrexate" are trade names. See generic names and che mical names.

    TSCA- Toxic Substances Control Act (1976)

    TSDF- Treatment, Storage and Disposal Facility

    Title m - the federal Emergency Planning and Community Right to Know Act; mandates emergency response planning at the State and Local levels through State Emergency Planning Commissions (SERCs) and L ocal Emergency Planning Committees (LEPCs); mandates automatic reporting of extremely hazardous substances at fixed facilities as well as reporting of toxic releases; provides for citizen access to all the above information

    Go to Top

    UEL or UFL - upper explosive or flammable limit; the maximum concentration of a vapor or gas in air that sustain a flame when an ignition source is present; mixtures above the UEL/UFL are too rich to burn

    UL - Underwriters Laboratories, Inc.

    Ug/M3- Micrograms per cubic meter of air, l000 micrograms equal one milligram.

    Vapor- the gaseous form of a substance that normally is a liquid or solid; examples: water vapor, vapors of organic solvents such as toluene vapors; please note it is incorrect to say "paint fumes" as the correct term is paint v apors

    Vapor density - the weight of a vapor or gas compared to the weight of an equal volume of air; materials with vapor densities less than l.0 are lighter than air and materials with vapor densities greater than l.0 are heavier than ai r

    Vapor pressure - the pressure exerted by a saturated vapor above its own liquid in a closed container; the higher the vapor pressure (reported in millimeters of mercury on an SDS), the more readily a substance evaporates; the lower the boiling point of a substance, the higher its vapor pressure

    Ventilation - A duct and fan system that takes contaminants (fumes or dust) in the air out of the work area, thereby reducing worker's exposure. The most effective type of ventilation is local exhaust ventilation, placed close to th e source of airborne fumes or dust and drawing it away from the worker

    Volatile - Tendency for a liquid to evaporate or vaporize rapidly.

    Water-reactive materials - any substance that readily reacts with or decomposes in the presence of water with substantial release of energy; examples: sodium metal, magnesium metal

    Go to Top



    Three laboratory accidents recently occurred on campus within a two week period.
    All three accidents had serious or potentially serious outcomes which might have been avoided if standard operating procedures (SOPs) and emergency resp onse procedures had been in effect.
    A chemistry graduate student was inspecting a sealed, evacuated pyrex tube he had just prepared when it imploded without warning, apparently due to an imperfection in the glass.
    Fragments of the tube went underneat h his goggles (Norton 180) and severely cut his right cornea. Although the injury was very severe and three glass shards are permanently embedded in his cornea, it could have been much worse.

    A few more millimeters of penetration would have meant los s of his right eye. The Norton 180 goggles did not provide adequate protection for this type of procedure.
    Evacuated glass tubes and apparatus should be regarded as hazardous at all times, not just during use. Always wear eye protection whe n working near a vacuum line. use a full face shield or goggles that protect the eyes from below as well as from the side.
    The second incident occurred at 7:00 pm in the evening while two students were cleaning up a laboratory. During the clean-up, a bottle of ethylamine was accidentally broken and ethylamine splashed onto the arms of one of th e students.
    Because the student was not aware of the safety shower, the ethylamine was not immediately washed off, resulting in chemical burns.The third accident also occurred in the evening and involved an explosion in a hood. Fortunately, no lab work was being done nor was anyone in the room at the time of the explosion. Although the exact cause of the explosion could not be determined, it is believed that someone mistakenly poured waste acid into a methylene chloride bottle.

    This mixture can result in a violent reaction and possible explosion. Glass fragments were spewn throughout the area, one with en ough force to completely cut through a plastic hose attached to a water source.These three accidents all underline the need for written standard operating procedures for each phase of laboratory work.

    For example, written SOPs for chemical handling, storage and disposal should have been in effect. Such writt en SOPs should also specify the proper protective equipment to be used. Everyone in the lab should be thoroughly familiar with all of these procedures.

    If your laboratory would like assistance in developing standard operating procedures, waste disposal procedures and emergency response actions, please contact the Environmental Health and Safety Office at X-48749. We are here to assist you.

    • Date:
    • Request by:
    • Principal Investigator:
    • Account #
    • Location of Chemicals
    • Building:
    • Location within room:
    • Chemical Name (be specific)*
    Go to Top



    Overview of Regulations
    OSHA Laboratory Standard New York City Fire Department 1-66 Laboratory Standard Hazard Recognition Chemical hazards: Fire/Explosion; C orrosive; Reactive, Toxic Physical hazards: Compressed gas cylinders, electrical, ionizing radiation, Specific laboratory hazards Hazardous substance recognition: signs and symptoms of exposure Labels and Safety Data Sheets Medical surveillance H azard Control The Laboratory Design: Engineering controls and safety equipment Work practices Standard operating procedures Personal protective equipment Housekeeping Emergency Response Fire/Explosion Chemical spills Equipment failure Hazardous Waste Reso urces SDS's, computer resources, health and safety references



    Particularly hazardous substances include reproductive toxins, allergens, acutely toxic and chronically toxic chemicals.Toxic effects are produced by a chemical if it reaches an appropriate site in the body at a concentration and for a length of time sufficient to produce a toxic response.

    The effects of toxic substances may appear immediately or soon after exposure (acute toxicity) or they may take many years to appear (chronic toxicity).ACUTELY TOXIC SUBSTANCES Acute effects are due to a single exposure or a few exposures usually occurring within the same 24-hour period. Acute health effects range from complete recovery, recovery with some damage, or death. Highly acute t oxic chemicals include hydrogen sulfide and hydrogen cyanide.CHRONICALLY TOXIC SUBSTANCES Chronic effects are due to repeated exposures to low doses of toxic substances usually over a long period of time.

    Chronic illnesses can occur either from a build-up of the chemical in the body or from an accum ulation of the damage. Examples of chronically toxic substances are the heavy metals such as mercury (central nervous system impairment), and organic solvents such as n-hexane (peripheral neuropathy).

    Chronically toxic substances also include carcinogens. The University laboratory policy mandates special handling procedures for select carcinogens. A select carcinogen is any substance which meets one of the following cnteria:

    1) it is regulated by OSHA as a carcinogen; or
    2)it is listed under the category "Known to be carcinogens" in the Annual Report on Carcinogens published by the National Toxicology Program (NTP); or
    3) it is listed under Group 1 ("Carcinogenic to humans") by the International Agency for Research (IARC) Cancer Monogr aphs; or
    4) it is listed in either GROUP 2A or 2B by IARC or under the category "Reasonably anticipated to be carcinogens" by NTP, and causes statistically significant tumor incidence in experimental animals in accordance with any of the followi ng criteria:


    a) after inhalation exposure of 6-7 hours per day, 5 days per week, for a significant portion of a lifetime to dosages of less than 10 mg/M3;)
    b) after repeated skin application of less than 300 mg/kg of body weight per week; or
    c) after oral dosages of less than 50 mg/kg of body weight per day.

    ALLERGENS Chemical allergy is an adverse, antibody mediated reaction resulting from a prior sensitization to a chemical. As with environmental allergens such as pollen and animal dander, not everyone's immune system will become sensitized to any particular chemical.

    For those that do develop a chemical allergy, sensitization usually evolves over a 10 - 21 day period, after which even a low dose exposure to the chemical results in an allergic reaction.
    The reaction itself usually becomes apparent 12 - 48 hours after exposure, and can range in severity from minor skin disturban ces such as inflammation, itching, and redness, to life-threatening anaphylaxis.

    Although any compound possesses the potential to elicit an allergic response in some subpopulation of workers, there are some chemicals that induce allergy more commonly than others. Some common allergens include toluene diisocyanate, bery llium, methylmethacrylate, formaldehyde, dinitrochlorobenzene, and powdered vinyl and latex gloves.


    Reproductive toxins are any compounds that interfere with the normal male or female reproductive processes. Reproductive toxins include mutagens and teratogens.
    Mutagens change a gene in the sperm or egg cell of the par ent. The parent is not directly affected but the offspring is. Teratogens cause damage to the growing embryo or fetus, even when present in small amounts, and cause severe birth defects.

    Other types of reproductive toxins may cause diminished fertility, e mbryolethality (death of a fertilized egg, embryo or fetus), retarded growth and postnatal functional deficits.


    1. Check the label, Safety Data Sheet and attached list at the end of this appendix to see if a chemical is considered acutely toxic, chronically toxic, a reproductive toxin or an allergen. If so, the followin g apply:
    2. Work in a clearly designated area. Identify the area (such as fume hoods, glove boxes, lab bench tops, and refrigerators) with proper warning signs. If possible, demarcate the area .For example, specific areas of a laboratory bench can be demarcated with yellow tape and labeled "suspect carcinogen.".
    3. Work surfaces in the designated area should be covered with stainless steel or plastic trays, dry absorbent plastic-backed paper or other impervious material. Decontaminate or dispose of these protective surfaces after any procedure inv olving high hazard chemicals has been completed.
    4. Primary containment must be used for any volatile high-hazard chemicals or for any procedure that results in the generation of aerosols. Primary containment devices include chemical fume hoods, glove boxes or other suitable containment.
    5. Vapors or aerosols produced by analytical instruments should be captured through local exhaust ventilation at the site of their production or be vented into a chemical fume hood or other suitable containment. Overtly contaminated analyt ical equipment should be promptly decontaminated
    .6. Appropriate personal protective equipment (eyewear, gloves, etc.) should be specified by the Principal Investigator in conduction with the EHS office. As a minimum, lab coats must be worn to protect street clothing. Such lab coats must never be worn outside the laboratory. In the event of contamination, remove the protective clothing immediately and dispose of or decontaminate it.
    7. Vacuum lines including water apirators should be protected (e.g., with an absorbent or liquid trap and a HEPA filter) to prevent entry of any high-hazard chemical into the system. When using volatile chemicals, a separate vacuum pump sh ould be used. This device should be placed within or vented into an appropriate laboratory-type hood.
    8. Stock quantities of high-hazard chemicals must be stored in a clearly designated and labeled storage area or cabinet. Maintain a listing of the stock quantities and include the dates of acquisition. Keep working quantities to a minimum. Working quantities should not normally exceed the amounts required for use in 1 week.
    9. Transport high-hazard chemicals in labeled, durable outer containers.
    10. All hazardous waste containers must be clearly labeled with the chemical category (flammable, reactive, corrosive, toxic ), list of contents, and the name and telephone number of the generating research group. High-hazard chemicals and relative percentages should be clearly designated.
    11. Any spill or accidental release of any high-hazard chemical, regardless of the amount, should be immediately reported to Security (x99) who will then coordinate spill response with the EHS office. Evacuate the area until the hazardous release has been characterized and controlled.
    12. Laboratory personnel of childbearing age should be informed of any known male or female reproductive toxins in the laboratory. Any pregnant employee or any employee planning to conceive and working with reproductive toxins should conta ct the EHS office. The EHS office can assess employee exposure, inform or consult the employee's physician, and determine whether work practices or controls may have to be instituted to minimize risk.
    13. If hood or equipment failure occurs, close the hood sash and evacuate the area. Obtain help immediately by following the notification procedures. Do not attempt to initiate an emergency response.

    Go to Top



    Electrical hazards can result in shock to personnel, ignition of combustible or explosive materials, electrical explosions, and inadvertent activation of equipment.

    The effects of electrical shock depend on the amount of current (amperage) pasing through the body, the current path and the frequency and duration of the flow. Resistance (measured in ohms) determines amperage so low voltage can be just as dangerous as high voltage. The resistance of the human body to current flow is contained almost entirely in the skin, particularly the dead, scaly cells of the outer layer.
    Different parts of the body differ in their resistance to current flow. wet moist skin is much less resistant to electron flow than dry skin.

    . Dry skin
    . Wet skin
    . Hand to foot
    . Ear to ear
    . 100,000 - 600,000 ohms
    . 1,000 ohms
    . 400 - 600 ohms

    100 ohms The three levels of electrical shock are mild, severe and deadly. Mild shock is caused by brief contact with current less than 5 milliamperes (mA). Severe shock is caused by longer contact with current from 5 to 25 milliamperes (mA).

    Deadl y shock occurs when a person is frozen to an electrical contact and receives continuous current greater than 25 milliamperes (mA).

    Go to Top


    1. Use properly grounded equipment. If an electrical device is grounded, its cord will have a three-prong plug and require a three way receptacle to accomodate it. Equipment need not be grounded if it is double-insulat ed; this is usually indicated by a label.
    2. Use double-insulated tools.
    3. Use ground-fault circuit interrupters (GFCI) which break the current whenever low levels of current leaking to ground are detected wherever there is a possibility of liquid/electrical contact.
    4. To minimize static electricity and sparks in hazardous areas and in handling flammable solvents and other chemicals, containers and equipment should be properly grounded and bonded, and blanketed with inert gas when needed.
    5. If power cannot be shut down when someone is receiving continuous shock, try to free the victim from the power source. Use a non-conductive object such as wood, plastic or rope to move the victim away from the power source. Do not touch the victim directly or you may become part of the "circuit."
    6. Inspect electrical equipment before use. Look for broken or bent plugs, frayed cords, bare wires, smoke, sparks from switches or controls, liquids spilled in or on equipment, or erratic operation. If you notice any of these defects, or suspect any problems at all, do not use the equipment. Tag the equipment and have it repaired by authorized personnel. Only qualified, trained persons should maintain electrical equipment.
    7. Electrical failure and overheating equipment should be reported to your immediate supervisor or the EHS office.


    Cryogens are gases that must be cooled to less than -150 F before they can be liquiefied. All cryogens require special handling because they have a very high liquid to vapor expansion, the ability to liquefy other gases and the potential t o damage living tissue. Cryogens and the surfaces they cool can cause severe burns upon skin contact.

    Go to Top


    1. Gloves and a face shield may be needed when preparing or using some cold baths.
    2 Immerse the object to be cooled slowly to avoid vigorous boiling and overflow of the coolant.
    3. Use properly vented containers. Dewar flasks should be made of borosilicate glass and wrapped with friction tape or a metal casing to contain flying pieces upon implosion. Do not pour cold liquid onto the edge of a Dewar flask as the fl ask may break and implode (e.g., do not pour liquid nitrogen out of a Dewar flask).
    4. Do not use liquid nitrogen or liquid air to cool a flammable mixture in the presence of air because oxygen can condense from the air, leading to an explosion hazard.
    5. Cold traps used in vacuum systems should be wrapped with friction tape to contain flying pieces in the event of an implosion.


    Compressed gases present both mechanical and chemical hazards and thus require careful handling procedures.

    1. Compressed gas cylinders shall always be secured in an upright position with chains, straps or special stands.
    2. Compressed gas cylinders must be hydrostatically tested by the manufacturer every ten years. The date of the latest test (month, year) is stamped into the metal of the cylinder. Cylinders with expired test dates must be returned to the manufacturer.
    3. Use a cart to move cylinders and always move cylinders with the protective cap and restraining chain in place.
    4. Only use cylinders that can be positively identified.
    5. Do not open a cylinder until the correct regulator is in place.
    6. After a new cylinder is hooked up and any other time the regulator or conducting tubing is disturbed or manipulated, the potential leak points in the system shall be leaked tested using soap solution.
    7. Do not tamper, modify, force or lubricate any cylinder valve.
    8. Do not use an oxygen regulator for any other gas or vice versa. Do not interchange combustible gas regulators with those for oil-free inert gases.
    9. Modification, alteration and repair of all regulators shall be done by the manufacturers. Never attempt to modify a gas cylinder regulator to make it fit a particular cylinder.
    10. Do not empty compressed gas cylinders completely to avoid possible formation of explosive air/gas mixtures.
    11. Clearly label empty cylinders as such (either EMPTY or MT).
    12. Store empty cylinders separately from full cylinders.
    13. Flammable gas use: storage and use of flammable gase within the laboratory unit must be in accordance with the New York City Fire Department laboratory regulation 1-66, which allows a maximum capacity of 15.4 cubic feet per laboratory. Flammable gases may only be stored in laboratory units where there is an on-going operation requiring their use. Such operations shall allow for storage of flammable gases sufficient to meet the operating requirements of the equipment in that laboratory plus an equal reserve.

    A FLAMMABLE GAS sign must be posted at the entrance of the laboratory.


    Shield high-pressure operations or operations under vacuum with a blast shield and always wear protective safety goggles. Closed systems in which reactions are carried out or to which heat is applied must be designed and tested to withstand pressure. Pressurized apparatus must have appropriate relief devices. If the reaction cannot be opened directly to the a ir, an inert gas purge and bubbler system should be used to avoid pressure build-up.

    Go to Top
    LASER HAZARDS 1. Personnel should use light-tight interlocked enclosures to enclose the laser beam.
    2. Wear laser safety eyewear whenever working in any laboratory where a laser is in operation.
    3. Before turning on any laser close the door to the laboratory and post the following sign on the door. CAUTION: LASER IN OPERATION DO NOT ENTER The letters must be 3 inches in height and in red. 4. On the door of every laboratory occupied by any laser and inside the laboratory the following symbol must be posted. The symbol must be in red and the background must be yellow or white. The letters must be-in black and one inch in heig ht.
    5. Never look directly into any laser beam. Lasers are highly intense focused forms of energy and can permanently damage the eye upon impingement.
    6.Never expose any part of your body to any laser beam. Besides being potentially hazardous to the eye lasers can also damage the skin severely.
    7. Equipment in the laboratory should consist of non-reflecting surfaces. This will prevent exposure to indirect beams.
    8. General illumination in laser radiation areas shall be at least 30 lumens per square foot, except where conditions of laser operation require lower ambient illumination.
    9. If only part of the laser beam is to be used, terminate the unused portion with a non-reflecting material.
    10. Anybody who operates a laser must be aware of the potential hazards of laser . beams. Therefore all expected users must undergo training.
    11. For appropriate signs, eyewear, enclosures and training contact the Environmental Health and Safety Office at x) 48749.
    12. All electrical equipment and wiring in any laboratory occupied by a laser must be under routine check for hazardous conditions. All electrical equipment must be grounded.
    13. Flammable solvents ( those with flash points less than 100F ) must be stored in premises that fully comply with the New York City Fire Department Directive 1-66.
    14. Lasers should be placed horizontally at approximately 4 feet above the ground.
    15. Lasers should not be moved from one laboratory to another.
    16. Only equipment and minimum amounts of material needed for operating the laser should be
    present in the laser laboratory